• Home
  • About
  • Services
  • Programs
  • Book Pete
  • Product Reviews
  • Podcasts
  • Blog
  • Contact

Exercise to slow down aging

by Pete McCall

10 Things to Know About Muscle Fibers

February 27, 2020 By Pete McCall 4 Comments

If you’re into working out then you do not want to waste time and achieve the results you’re working towards. When it comes to reaching your goals, it’s important to know a little about how your body responds to exercise. Like you, I want results from the time I spend in the gym – ESPECIALLY when I’m using iron; as a strength coach and fitness educator I know a little about how our muscles work and will share some info that can help you.

If your goals include ‘toning up’ it’s important to know exactly what that means and how to do it. Tone comes from  the term ‘tonus,’ which is the technical term for the contraction of a muscle fiber; when all of the fibers within a muscle maintain a state of semi-contraction that is what creates the shape we commonly associate with a well-defined muscle.

The longer a muscle stays under tension (by contracting) the better definition it can achieve.

 

The primary purpose of muscle fibers is to control the physical forces moving through your body. Muscle shortening actions can generate a force to create movement; for example when moving from a seated to a standing position the quadriceps and gluteus maximus shorten to help the body stand up against gravity.

When a muscle lengthens it controls and decelerates a force such as when the quadriceps and glutes lengthen to control the motion of the body as it returns to a seated position. If you want your workouts to produce results it is important to have an understanding of how muscle fibers respond to exercise; here are a few important things to know about muscle fibers and how they are effected by exercise.

  1. Muscle fibers adapt to the specific type of exercise stimulus imposed during training. Mechanical stress refers to the physical stresses applied during resistance training which causes micro-trauma to muscle fibers. As fibers are damaged from exercise they signal thebiochemical reaction to produce new satellite cells responsible for repairing the mechanical structure of the muscle cell as well as building new muscle proteins.
    Training with barbells places 1 type of stimulus on muscle fibers.

     

  2. Muscle fibers are activated by a motor neuron which is the connection between the central nervous system and the specific muscle required to perform a particular activity. A muscle motor unit is the motor neuron and the attached muscle fibers. Think of a motor unit as a light switch for the muscle, as a muscle is required to generate a force the motor units will ‘light up’ to stimulate the fibers to shorten in order to produce that force. There are a number of different muscle unit types that are often organized into three general categories: type I, type IIA and type IIB
  3. According to the all-or-none theory, a motor unit is either active or inactive, when it is signaled to contract it activates all of its attached muscle fibers. Slow-twitch motor units have a low threshold for activation and low conduction velocities, and are attached to type I muscle fibers. Fast-twitch motor units have a higher activation threshold, are attached to type II muscle fibers and are capable of conducting signals at higher velocities resulting in greater amounts of muscle force.
  4. Type I fibers are known as aerobic fibers. These fibers have a higher density of mitochondria which are efficient at aerobic metabolism, the process of creating energy to fuel muscle activity with oxygen. The mitochondria give the cell a darker color and the reason why these are known as red muscle fibers. Type I fibers use oxygen to create energy for lower-intensity, long term endurance-oriented activities like walking, running, swimming, cycling or standing for extended periods of time.
  5. Type IIB fibers are known as anaerobic muscle fibers. Type IIB fibers store energy that is released for short, explosive extremely high-intensity activities. Type IIB fibers do not have mitochondria and have a colorless appearance so they are known as white fibers. Type IIB fibers are used for strength and power activities requiring a high amount of force in a short period of time, because they have a limited supply of stored energy they fatigue quickly.
  6. Type IIA fibers have mitochondria so they can be involved in aerobic activities but can also be used to produce force rapidly during activities requiring a high amount of strength or power. Fast-twitch muscle fibers also have a greater diameter than type I fibers and play a more significant role in hypertrophy. Recruiting and innervating type II muscle fibers requires creating enough mechanical overload to fatigue the involved muscle by the end of the set
  7. Muscle fibers work according to the size principle. As a muscle
    Kettlebell swings to fatigue is one way to recruit ALL muscle fibers

    requires force it will start by activating the smaller type I motor units when they can not provide the necessary force (or fatigue) the larger type II motor units and muscle fibers are recruited to perform the work. A muscle has a finite number of motor units and the higher-threshold type II motor units are not “turned on” unless a high level of force is needed. The most common way to increase motor unit activation is by lifting heavier weights; an increased load placed on a muscle will cause a greater number of motor units to activate more fibers to generate the force necessary to overcome the resistance. This is why your muscles shake when you try to lift a heavy weight for the first time, muscle motor units not previously used are being “woken up” and called into action.

  8. Muscle fibers experience two specific types of hypertrophy (the technical term for muscle growth). Myofibrillar hypertrophy refers to the increase in size or thickness of individual actin and myosin protein filaments, which can improve the force production capacity of individual fibers. Myofibrillar hypertrophy does not lead to larger muscles; rather, it results in thicker muscle fibers capable of generating more force. Sarcoplasmic hypertrophy is an increase in the volume of the semifluid inter-fibrillar substance surrounding an individual muscle fiber. This fluid contains the proteins used to promote tissue repair and growth. The muscle “pump” that body-builders work to achieve is actually sarcoplasmic hypertrophy—the cross-section of muscle fibers will increase, but most of the enhanced muscle size is due to an increased volume of the sarcoplasm and non-contractile proteins not directly involved with force production. Here’s an example of a workout that combines strength training with functional movements to engage ALL fibers in the glutes:
  9. One of the long-term adaptations of muscle to resistance training is an increase in muscle fiber cross-width. As the cross-sectional area increases in size, the fibers have more surface tension and become capable of generating higher amounts of force. Muscles with a larger cross-sectional area of individual muscle fibers are capable of producing greater amounts of force. In addition to being responsible for producing the force necessary for dynamic movements, type II muscle fibers have a greater diameter (cross-width) than type I fibers and are responsible for the hypertrophy, or increased size, of a particular muscle.
  10. Type IIA and IIB muscle fibers are responsible for generating movement as well as muscle size and definition. Both classifications of type II muscle fibers create higher levels of force to produce human movement and are known as phasic muscles. Type I fibers are responsible for maintaining postural control along with joint stability and can be categorized as tonic muscles.

Here is why it is important to know about how your muscle fibers work:

Bodyweight exercise to the point of fatigue is one way to recruit all fibers in a muscle.
  • If your goals include improving muscle definition or increasing levels of strength the only way to achieve this is by activating the type II motor units and muscle fibers. There is a common gym myth which mistakenly believes that developing muscle tone (“toning up”) is best achieved by using lighter weights for higher repetitions. It can be possible to achieve definition with lower weights but it requires doing a lot of repetitions until the muscle fatigues and can no longer contract. Unless the exercise is performed to fatigue which occurs only after recruiting the type II fibers, it will not improve definition. However, if time is an issue using a heavier weight for fewer repetitions is an effective technique for stimulating growth and definition from the type II fibers.

 

 

 

 

 

Knowledge is power but knowing how to apply the knowledge can help you reach your goals quicker and make the most of your time in the gym. To learn more about how to design exercise programs to reach YOUR goal, pick up a copy of my book

 

 

 

 

 

 

 

Or listen to the All About Fitness podcast, available on iTunes

Filed Under: Exercise Science, Fitness Consumer Info Tagged With: benefits of strength training, best way to exercise, exercise, exercise for muscle definition, exercise for muscle growth, fitness, how can I add muscle, how can I get bigger, how can I get stronger, how can I make my muscles bigger, how do I get more muscle definition, how do I make my muscles ripped, how do muscles grow, how do my muscles work, how to add muscle, how to get big, how to get results from exercise, how to grow muscle, how to improve muscle definition, muscle definition, muscle toning, results, secrets to growing muscle, strength training, weight lifting

Comments

  1. Erik says

    April 24, 2019 at 9:09 pm

    Hi please explain what you mean by inc muscle tension equals inc in force production.
    Thanks

    Reply
    • Pete McCall says

      April 25, 2019 at 5:31 pm

      Muscle fibers generate tension – when they contract they pull on the fascia which can increase the magnitude of force production.

      Reply
  2. James says

    April 22, 2020 at 9:20 pm

    So if my understanding is correct, higher rep training(say around 15-20 reps)- unless taken to failure- primarily recruits the slow twitch fibers. The pump brought on with this type of training signifies a great deal of metabolic stress. This results in sarcoplasmic hypertrophy, with an increase in the fluid of the cell and also things like the mitochondria. Is this pretty much accurate?

    Reply
    • Pete McCall says

      October 8, 2020 at 3:42 am

      Yes, according to the research, the higher rep ranges, especially when done to fatigue, can induce sarcoplasmic hypertrophy; while the heavier loads done for fewer reps, but stopping before fatigue occurs can result in myofibrillar hypertrophy. The way I understand it, both types will primarily effect type II fibers – working to fatigue means recruiting ALL fibers; doing high reps but stopping before fatigue will primarily engage type I fibers. Thanks for investing in Smarter Workouts – hopefully it is providing good information.

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Exercise How-to
  • Exercise Science
  • Fitness Consumer Info
  • Fitness Product Information
  • News
  • Over 40+ Strength Training
  • Product Review Category 1
  • Product Reviews
  • Workout Ideas
  • Facebook
  • Instagram
  • LinkedIn
  • RSS
  • Twitter
  • YouTube

SEARCH

NEW TO PETE MCCALL FITNESS?

VIEW SERVICES

GET IN TOUCH

pete@petemccallfitness.com

GET SOCIAL

  • Facebook
  • Instagram
  • LinkedIn
  • RSS
  • Twitter
  • YouTube

SIGN UP FOR EXCLUSIVE CONTENT

Copyright © 2021 · PeteMcCallFitness.com